ISSN 1070-4280, Russian Journal of Organic Chemistry, 2006, Vol. 42, No. 10, pp. 1581–1582. © Pleiades Publishing, Inc., 2006. Original Russian Text © B.F. Kukharev, V.K. Stankevich, N.A. Lobanova, G.R. Klimenko, E.Kh. Sadykov, 2006, published in Zhurnal Organicheskoi Khimii, 2006, Vol. 42, No. 10, pp. 1590–1591.

SHORT COMMUNICATIONS

Reaction of Acetylene with 2-Hydrazinoethanol

B. F. Kukharev, V. K. Stankevich, N. A. Lobanova, G. R. Klimenko, and E. Kh. Sadykov

Favorskii Irkutsk Institute of Chemistry, Siberian Division, Russian Academy of Sciences, ul. Favorskogo 1, Irkutsk, 664033 Russia e-mail: irk_inst_chem@irioch.irk.ru

Received December 19, 2005

DOI: 10.1134/S1070428006100332

Unlike well-known reactions of acetylene with amino alcohols [1, 2], its reactions with hydrazinoethanols were not studied. We examined the reaction of 2-hydrazinoethanol (I) with acetylene in benzene in the presence of anhydrous cadmium acetate as catalyst. Separation of the reaction mixture by vacuum distillation gave E- and Z-isomeric acetaldehyde N-(2-hydroxyethyl)hydrazones II and III and N-(E)-ethylidene-2-methyloxazolidin-3-amine (IV). Presumably, the reaction begins with addition of the primary amino group in hydrazine I to acetylene to give hydrazones II and III, as in the cadmium acetate-catalyzed reactions of acetylene with primary amines [3]. The subsequent vinylation of the same nitrogen atom leads to unstable intermediate A which undergoes intramolecular ring closure involving the N-vinyl-N-(2-hydroxyethyl) fragment.

Insofar as no 3-aminooxazolidine **B** was detected in the reaction mixture before separation by ${}^{1}H$ NMR spectroscopy, the path of formation of hydrazone IV through intermediate **B** was ruled out.

It is known that *E* and *Z* izomers of unsubstituted aliphatic aldehyde hydrazones are separated by a low energy barrier and that the *E* isomer predominates in solution. The CH=N proton in the *E* isomer gives a signal in the ¹H NMR spectra in a weaker field relative to the corresponding signal of the *Z* isomer [3]. The ratio of compounds **II** and **III** was estimated at 2:3 on the basis of the CH=N signal intensity ratio. Compound **IV** was formed exclusively as *E* isomer.

N-(E)-Ethylidene-2-methyloxazolidin-3-amine (IV). A mixture of 100 ml of benzene, 22.83 g (0.3 mol) of 2-hydrazinoethanol (I), and 2.28 g of anhydrous cadmium acetate in a 0.5-1 steel high-pressure reactor was saturated with acetylene to a pressure of 14 atm and was then heated for 6 h at 130°C. Distillation gave 1.65 g (43%) of compound IV, bp 66-68°C (17 mm), $d_4^{20} = 0.9807$, $n_D^{20} = 1.4678$. IR spectrum, v, cm⁻¹: 458, 508, 672, 783, 843, 917, 947, 990, 1033, 1100, 1132, 1165, 1180, 1217, 1283, 1317, 1380, 1442, 1450, 1608, 2708, 2752, 2835, 2874, 2908, 2972. ¹H NMR spectrum, δ , ppm (J, Hz): 1.37 d (3H, =CHMe, ${}^{3}J = 5.2$), 1.90 d (3H, 2-Me, ${}^{3}J = 5.4$), 2.89 d.d (1H, NCH₂, ${}^{2}J = 8.4$, ${}^{3}J = 15.0$) and 3.38 d.d (1H, NCH₂, ${}^{2}J = 7.3$, ${}^{3}J = 14.5$), 3.92 d.d (1H, OCH₂, ${}^{2}J = 8.1, {}^{3}J = 13.5$) and 4.06 d.d (1H, OCH₂, ${}^{2}J = 7.2$, ${}^{3}J = 14.6$), 4.48 q (1H, OCHN, J = 5.4), 6.83 q (1H, N=CH, J = 5.2). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 19.05 (=CHMe), 19.83 (2-Me), 49.78 (NCH₂), 64.58 (OCH₂),

92.35 (OCHN), 139.38 (N=CH). Found, %: C 56.47; H 9.86; N 21.33. C₆H₁₂N₂O. Calculated, %: C 56.23; H 9.94; N 21.86.

Acetaldehyde *N*-(2-hydroxyethyl)hydrazones II and III (a mixture of isomers) were isolated by subsequent distillation. Yield 11.1 g (36%), bp 107–112°C (13 mm), $d_4^{20} = 1.0439$, $n_D^{20} = 1.4854$. IR spectrum, v, cm⁻¹: 453, 652, 812, 850, 917, 942, 1018, 1083, 1212, 1312, 1358, 1417, 1558, 1598, 1650, 1725, 2850, 2917, 3233–3367. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.73 d (1.2H, Me, *Z*, ³*J* = 5.5), 1.85 d (1.8H, Me, *E*, ³*J* = 5.3), 3.17 t (1.2H, NCH₂, *E*, ³*J* = 4.7), 3.28 t (0.8H, NCH₂, *Z*, ³*J* = 4.9), 3.75 m (2H, OCH₂), 6.59 q (0.4H, CH=N, *Z*, ³*J* = 5.5), 7.03 q (0.6H, CH=N, *E*, ³*J* = 5.3). Found, %: C 47.12; H 9.91; N 27.31. C₄H₁₀N₂O. Calculated, %: C 47.04; H 9.87; N 27.43. The ¹H and ¹³C NMR spectra were recorded at 26°C on a Bruker DPX-400 instrument (400 and 100 MHz, respectively) using CDCl₃ as solvent and HMDS as internal reference. The IR spectra were measured on a Specord 75IR spectrometer from thin films (neat).

REFERENCES

- Kukharev, B.F., Stankevich, V.K., and Klimenko, G.R., Usp. Khim., 1995, vol. 64, p. 562; Trofimov, B.A., Geteroatomnye proizvodnye atsetilena (Heteroatom Acetylene Derivatives), Moscow: Nauka, 1981, p. 92.
- 2. Reppe, W., Justus Liebigs Ann. Chem., 1965, vol. 601, p. 81.
- 3. Kitaev, Yu.P. and Buzykin, B.I., *Gidrazony* (Hydrazones), Moscow: Nauka, 1974, p. 49.